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Variational approach: Orlicz double phase functional
Special functionals

Starting Point: De Giorgi-Nash-Moser Theory
Nonvariational Approach: Theory of viscosity solutions
I3 Starting point: Krylov-Safanov theorem

I3 Monge-Ampére equation and Optimal Transport
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VARIATIONAL APPROACH: ORLICZ DOUBLE PHASE FUNCTIONAL
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3. Orlicz double phase functional (ODP

WA(Q) 3 v e P(v, Q) ::/Q[G(|Vv|)+a(x)H(|Vv|)] . (1)

where
QcR" n>2,is a bounded open subset
B Sobolev space W1(Q) = {v € L}() : weak derivative Vv e L}(Q;R")}

/vapdx:—/vaodx Ve CZ(Q)
Q Q

O(x,t):=G(t)+a(x)H(t) (xeQ,t=0)

B G,H:[0,00) - [0, 00) are N-functions of class C*([0,c0)) n C?((0,0))
such that there exist constants cg, cy satisyfing

1 G"(t)t H"(t)t
ES 0] <cc and CHS 7 (o) <cy (Vt>0) 2

B 0<a(-) e C%%(Q) for some € (0,1].
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4. Motivation!?2

m Modelling of strongly anisotropic materials

m Elasticity

Homogenization

m Lavrentiev phenomenon

1(V.V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C.
R . Acad. Sci. Paris. Sér. | Math 316 (1993))
2 . . . . . . '*
(V.V. Zhikov, Averaging of functionals of the calculus of variations and elastlc::—:*log%lzllz\\(_}l
Akad. Nauk SSSR Ser. Math. 1986)



5. Musialek-Orlicz space

We define the complementary function ®* of ® by

% (x,t) = sup (st - ®(x,s))

Musielak-Orlicz space associated to ¢

L®(Q) := span {v Q->R: /¢(X,|v(x)|) dx < oo}.

Q

Properties3

If & satisfies (2), then L®(Q) is a Banach space under the Luxemburg norm

|V|L¢(Q):inf{a>o;/ ( |V(X)|)d <1}
)

If ® satisfies (2), L® () is a Banach space under the corresponding

Luxemburg norm.




6. Musielak-Orlicz-Sobolev space

m Musielak-Orlicz-Sobolev space associated to ¢

WL®(Q) := span {v € L°(Q) : weak gradient Vv ¢ L¢(Q;R”)}.

Properties3

u If ® satisfies (2), WH®(Q) is a Banach space under the Luxemburg norm

Ivlwre@y = 1Vlie@) + 1VVIie@mn) -
() (@) (

w If ® satisfies (2), W® (Q) is a Banach space.

Example:
P

m If &(x,t) =tP (p>1), then WH®(Q) = WLP(Q) and &*(x, t) = t1.
= In particular, ®(x, t) = t2, then W1*®(Q) = W2(Q) = H}(Q) and
O*(x,t) = t2.

3(F’ Harjulehto and P. Hastd, Orlicz spaces and Generalized Orlicz spaces, Lectufeinotes in
' ' ' nll Q0ttawa
Mathematics, 2019) Iﬁ



7. Principle question

Q1 Discovering suitable optimal conditions to be replaced on nonlinearity

under which we prove

Q2 a local minimizer u of ODP functional is regular suitably:

EENREoENE

Existence of a solution in a given class of functions,
Uniqueness of minima satisfying same boundary condition,
Boundedness,

Harnack’s inequality,

Holder continuity,

Sobolev regularity,

Lipschitz regularity,

Gradient Hélder continuity,

Smoothness and analiticity if they are obtainable.

uOttawa



8. Minima

Definition of a minimizer?

A function u e WY1(Q) is a local minimizer of the functional P in (1) if
L o(x,[Vul) = G(|vu]) + a()H(|Vul) € L1(Q),

2. The minimality condition
/ d(x,|Vul|)dx < / d(x,|Vw|) dx
supp(u-w) supp(u-w)

is satisfied whenever w € W11(Q) is such that supp(u—w) € Q.

' 1 5(0)6%:)1\\-e|

4(E. Giusti, Direct methods in the calculus of variations, World Scientific Publish



9. Euler-Lagrange equation

Euler-Lagrange equation

Let ue WH1(Q) be a local minimizer of ODP functional . A function
Rate f(t):=P(u+tp, Q) attains its minimimum at t = 0 for every ¢ € C5°(Q).
Then

G'(|vu]) H'(|vul) _ C coe
/(|vu|Vu+a(x)|vu|Vu,V<p)—0 (Vp e G5°(2))

Definition of a weak solution

ue WH(Q) is called a weak solution of Orlicz double phase equation

(G (vul) HAVeDo Yoo i
dIV(Wu|vu+a(X)|Vu|vu)_0 in Q 3)

S R O e AR

holds true for all ¢ € W, (Q) with ®(x,|V|) € L1(Q).




10. Holder continuity of minima

Theorem 1 (B.-Byun, [Memoirs of AMS 2025])

Let ue WH1(Q) be a local minimizer of ODP functional P or a weak solution of
ODP equation. If one of the following assumptions

su H(p) 0o a
8 S I6(aTE < )
H(p) P
plig GO pa(n) < oo and ue L®(Q) (4b)
or
H(p) =
Spligm <ooand uel™(Q) (4¢)

is satisfied, then u € Clg’cg(ﬂ) for some 6 € (0,1). Moreover, for every Qg € Q, we
have

||UHL°<’(QO) +[u]coe(q,) < C(data, Qo)

v
uOttawa



11. Harnack’s inequality

Theorem 2 (B.-Byun, [Memoirs of AMS 2025])

Let ue W1(Q) be a nonnegative local minimizer of ODP functional P or a

nonnegative weak solution of ODP equation. If one of the following assumptions

P O ICTE < (52)
iggc(p)’fp@(;(p) < o0 and u e L®(Q), (5b)
2 e < L) 9
e oy - G <X e @ &1

is satisfied, for every ball B c Qg € 2, we have

sup u < c(data, Q) inf u.
Br Br




12. Morrey decay

Theorem 3 (B.-Byun, [Memoirs of AMS 2025])

Let ue WH1(Q) be a local minimizer of ODP functional P or a weak solution of
ODP equation. If one of the following assumptions

P O ICTE < (62)
iﬂﬁc;g;)lf;x)c;(m < o0 and u e L=(Q), (6b)
W oy g e < L) (6c)
PP - G <X e @ &)

is satisfied, then u e C?(Q) for every 6 € (0,1). Moreover, for every o € (0, n), it

loc
holds, whenever B, c Bg € Q with R <1 are concentric balls,

|, ot Ivu) des (5)" / O [7u) o

r




13. Maximal regularity

Theorem 4 (B.-Byun, [Memoirs of AMS 2025])

Let ue WH1(Q) be a local minimizer of ODP functional P or a weak solution of
ODP equation. If any of the following assumptions

6 G(p) +H[(Gp()p>Jl+? - e
iggGOni%2G0»<unandueL”(QL (7b)
S < ) "
o

e e - G <X e @ &)

is satisfied, then there exists an exponent 6 = 0(n, sg, sy, ) € (0,1) such that
Vue C29(Q).

loc

I oW



SPECIAL FUNCTIONALS

uOttawa



15. Special Double phase functionals

(p, g)-double phase functional introduced by Zhikov is the hardest one to treat

Wh(Q) 5 v e / (VVP + a()[Vvl®) dx, 1<p<a,
Q

and its borderline case

Wh(Q)5 v e / (IVV]P + a(x)|vvlPlog(e + [Vv])) dx, 1<p
Q

. Giuseppe Mingione 2 Fouow
d  University of Parma
\ Verified email at unipr.it - Homepage
Calculus of Variations Mathematical analysis Analysis of PDEs Regularity Dark Side

TimE CTEDBY  YEAR
Regularity results for stationary electro-rheological fluids 812 2002
E Acerbi, G Mingione

Archive for Mechanics and Analysis 164, 213250

Regularity results for a class of functionals with non-standard growth 683 2001
E Acerbi, G Mingione

Archive fo Retional Mechanics and Analysis 156 (2), 121-140

Regularity for double phase variational problems 631 2015
M Colombo, G Ming

Archiv Mechanics and Analysis 215 (2), 443-496

Bounded minimisers of double phase variational integrals 546 2015
C ione

Archiv onal

Regularity for general functionals with double phase 544 2018
P Baroni, M Col 3 Mingiono g
ot stons 51 ) 2 P
' | uOttawa



6. References fi

special double phase fun

Maria Colombo

Professor, EPFL Lausanne
Verified email at epfl.ch - Homepage

Mathematical analysis
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M Colombo, G Mingione
Arch. Ration. Mech. Anal 218 (1), 219-273

Regularity for general functionals with double phase 546 2018
P Baroni, M Colombo, G Mingione
Calculus of Variations and Partial Differential Equations 57 (2), 62

Harnack inequalities for double phase functionals 400 2015
P Baroni, M Colombo, G Mingione
Nonlinear Analysis: Theory, Methods & Applications 121, 206-222

Non-autonomous functionals, borderline cases and related function classes 325 2016
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M Colombo, G Mingione
Journal of Functional Analysis 270 (4), 1416-1478
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17. Laplacean: ®(x,t) =tP or G(t

p-Laplace energy or equation®:
Wh(Q)s v / |Vv[P dx «— div(|Vv[P2Vv) =0 in Q
Q

Motivation: Conformal Geometry, Optimal Matching problem
(Ladyzheskaya, Uraltseva, Evans, Giaquinta, Giusti, Lewis, Lindqvist,
Manfredi, Uhlenbeck, and many others)

G-Laplace energy or equation®:

G'(Jvv))
Vvl

(Diening, Stroffolini, Verde, Lieberman, Byun, and many others)

Wt (Q)s v r—>/ G(|Vv]) dx «— div( Vv) =0in Q
Q

5(G. Mingione and V. Radulescu, Recent developments in problems with nonstar@d{l%swylt\f\\’l
and nonuniform ellipticity, JMAA, 2021) ik



18. Many other examples

®(x,t) = tPlog’(e + t) + a(x)t7 log™ (e + t) (Zygmund double phase)
O(x,t) = G(t)+a(x)G(t)log(e+1t)

d(x,t) = G(t)+a(x)G(t)log(e+ G(t)) so on...

Multi-phase functionals such as ®(x,t) = G(t) + a(x)H,(t) + b(x)Hp(t)

However, what happens if G, H do not satisfy the assumption (2)7?
For instance, double phase functional at linear growth given by

Wl’l(Q) SV /(|Vv| log(e +|Vv]) + a(x)|Vv|?) dx
Q

is investigated, see a recent reference ®7.

6(G. Mingione and C. De Filippis, Regularity for double phase problems at nearly linear

growth, ARMA, 2023) @Hﬂ i
7(G. Mingione and C. De Filippis, Nonuniformly elliptic Schauder theory, Invent. atlh. i(l)ﬁ}i)r



19. Key steps for proving Theorem 1-4

=

Absence of Lavrentiev phenomenon.

Sobolev-Poincaré type inequalities.

(o[ |

Caccioppoli type inequality.
Local boundedness of minima.
Almost standard Caccioppoli inequality.

Holder continuity of minima (Clg’cg—regularity for some 6 € (0,1)).

[~ o I I~ |

Harnack's inequality.

Harmonic type approximation.

Morrey Decay estimates (Clg’f—regularity for any 6 € (0,1)).

1.0 . -
G, -regularity of minima.

B

uOttawa



STARTING POINT: DE GIORGI-NASH-MOSER THEORY
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21. Hilbert's 19th problem of regularity

Let us consider the following functional
vie F(v):= / F(vv)dx,
Q

where F : Q xR" - R is analytic, convex and det V2F > 0.
u ! Laplace equation: Au =0 corresponds to F(&) = |¢[?
ujujuj;

1+|V|2) ujj = 0 corresponds to
u

m ! Minimal surface equation: ((5,-j -

F(&) =V1+[EP

Hilbert's 19th question

Are minima of the variational integral F are analytic? or Whether all such

Euler-Lagrange equations
div(VF(Vv)) =0

admit only analytic solutions?

iy Jtawe
1(E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing,lk(oog')m :



22. Early answers

= Bernstein, 1904: C2 solutions are analytic in two dimensional case

m Hopf, Schauder, Caccioppoli, Morrey, Leray, Liechtenstein (many others)
Final outcome: CY“ — Analytic.

m Using the difference quotient techniques, we can show a minimizer u of the
functional

Vi / F(vv)dx
Q
solves Euler-Lagrange equation
div(VF(Vu)) =0
and therefore every component Vsu solves

Vi(aj(x)Vjv) = 0 with a;(x) = F,e;(Vu(x))

uOttawa



23. Theorem (De Giorgi-Nash-Moser

Theorem (De Giorgi 1956, Nash 1957)

Let v e W2(Q) be a weak solution of the equation

Vi(aij(x)Vjv) =0in Q,

where
VIER < ay(x)&& < LIEP (0 <v<L).

Then there exists an exponent a = a(n, L/v) € (0,1) such that

ViX)—V
sup [v()| + sup OOy 1 00) vl (@0ED)
x€Qo x,y€€y |X - _)/|

De Giorgi's theorem above concerns the regularity for uniformly elliptic linear

equations. However, the linearity does not play a role in his proof ©.

uOttawa




NONVARIATIONAL APPROACH: THEORY OF VISCOSITY SOLUTIONS
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25. A short guide to viscosity solutions

The theory of viscosity solutions applies to certain partial differential equations of
the form

F(x,u,Vu,V?u) =0in QcR", (8)
where
B F=F(xr&M):QxRxR"xS8(n) - R satisfies monotonicity condition
F(x,r,&,N) < F(x,s,§,M) whenever r<sand M<N,

where r,seR, x€Q, £€R"” and M, N € S(n).

m u stands for a real-valued continuous unknown function defined on Q

m Gradient of u: Vu = (%‘(’I_)

. . 2 _ 9%u
m Hessian of u: Vu = (ax,-axj)

uOttawa



26. Examples

m Laplace equation: F(x,r,&, M) =—tr(M)
Au=0
m p-Laplace equation: F(x,r,&, M) = —[£[P72tr(M) + (p - 2)[£[P~*tr((£ @ £)M)
—VulP2Au+ (p-2)|VulP*tr((Vu® Vu)V3u) =0

m Hamilton-Jacobi-Bellman or Isaac equations for stochastic control and
stochastic differential games.

m Monge-Ampére equation

—det(M) + f(x,r,&) if M >0

+00 otherwise

F(x,r,&, M) ::{

det(V2u) = f(x,u,Vu) (uis convex)

m Fully nonlinear elliptic equation: F(x,r,&, M) satisfies

Atr(N) < F(x,r &, M) = F(x,r,&, M+ N) < Atr(N) (VN )l'|()llzl\u|



27. Viscosity solutions

Definition of a viscosity solution®

A continuous function u is called a viscosity supersolution of (8) if for any
xp € §, for all ¢ € C?(Q) such that u— ¢ has a local minimum at xo, there holds

F(x0, u(x0), Vo (x0), V2$(x0)) > O.

A continuous function u is called a viscosity subsolution of (8) if for any xg € Q,
for all ¢ € C2(Q) such that u— ¢ has a local maximum at xp, there holds

‘7:(X07 U(X0)7 v¢(X0)a V2¢(Xo)) <0.

We say that ue C(Q) is a viscosity solution of (8) if u is a viscosity
supersolution and subsolution simultaneously.

uOttawa

8(M.G. Crandal, H. Ishii and P.L. Lions, Bulletin of the AMS, 1992)



28. A class of nonlinear elliptic equations

We consider a class of singular/degenerate nonlinear elliptic equations
F(x,u,Vu,V2u) = A(x, , u, Vu) F(V2u) - F(x) = 0 9)

where

m A(x, u, Vu)|[Vul? » &(x,|Vul) = G(|Vu|) + a(x)H(|Vul) (Orlicz double phase
integrand function)

m F:S8(n) — R is an operator satisfying uniform ellipticity condition
Atr(N) < F(M) - F(M+ N) <Atr(N) (VO<NeS(n))

m fel>(Q)
Motivation:

m Transmission problems for diffusion processes in heterogeneous media with
applications to
m thermal

u electromagnetic conductivity
m composite materials uOttawa



29. Some recent results

Theorem (B.-Byun-K.-A. Lee-S.-C. Lee)

Let ue C(2) be a viscosity solution of (9) under suitably optimal assumptions on

nonlineaty.
wue Gl Q).

= The existence of solution and global C1'® estimate with Dirichlet boundary

condition!?.

Basic ideas of the proof
m Ishii-Lions techniques and compactness arguments.

m Peron's method for the existence of a solution.

0B, S.S.Byun, K.A. Lee and S.C. Lee, CY®-regularity for a class of degenerate/singular fully
non-linear elliptic equations, IFB 2024)

upg S.S.Byun, K.A. Lee and S.C. Lee, Global regularity results for a class of wCittawa
singular/degenerate fully nonlinear elliptic equations, MZ 2024 ik



STARTING POINT: KRYLOV-SAFANOV THEOREM
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31. Krylov-Safanov theorem and Caffarelli’s theorem

Theorem(Caffarelli, [Anal. Math. 1989])
Any u e C(Q) viscosity solution of

F(x,u,Vu,V2u) = F(V?u) =0 in Q

is in ue C-*(Q) for o= a(n,v, L) € (0,1].

loc

Theorem (Krylov-Safanov 12)

Let u e C(Q2) be a viscosity solution to
F(x,V2u) = —a;;(x)0ju =0 in Q c R".
where there exist constant 0 < A < A such that

MNP < aj(x)&& < NEP (Yx e, £ €R)

Then we have u € Clg’ca(Q) and it satisfies Harnack’s inequality.

o

12(N.V. Krylov, Lectures on elliptic and parabolic PDEs in Holder spaces, Gradua@tﬁ?'ﬁf'm :
Mathematics AMS, 1996) iRie



MONGE-AMPERE EQUATION AND OPTIMAL TRANSPORT
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33. Regularity for Monge-Amperé equation

F(x,u,Vu,V?u) = —det(V?u) + f(x) =0 in Q

where

u is convex
O<A<fel=(Q)<A.

Theorem (Caffarelli [Ann. Math. 1990])

Let u be a strictly convex function satisfying Monge-Ampére equation above in
viscosity sense. Then there exists a = a(n, A, \) € (0,1) such that u e Cli’ca(Q).
More precisely, for every Qg € 2, there exists a constant C depending only n, A, A,

Qo and the modulus of convexity of u such that

vu() - vu)l _ -

sup
x#ye |X _}/|a

There are many other discovered regularity results such as C*°, C><, WP, W31
so on (Caffarelli, Figalli, De Philippis, Wang, many others)




34. Application to Optimal Transport Theory

o2
Wiy =t [ B ana)
X XLy

well(p,v) 2

where

m the set of transport plans

MN(p,v) ={meP(Qx xQy) :7(AxQy) =pu(A) and 7(Qx x B) =v(B)}

( for any Ac Qx and B c Qy measurable subsets ).

m Open, bounded, and convex sets Q2x,Qy c R”
= Probability measures 1 € P(Qx) and v € P(Qy)
m p=fL" and v = gL£" with spt f = Qx and spt g = Qy

m There are positive constants A and A such that

A<Fg<A

uOttawa



35. Application to Optimal Transport Theory

Theorem(Brenier 13)

7o € M(w,v) is an optimal transport plan for W5 (u,v) if and only if

i) = G i) ) £ B 2 @y 2y £ Bl
= {(X,y) €Qx xQy: UO(X) + VO(y) = <X7y>}

for a convex semicontinuous function ug : Q2x — R, where

vo := ug is the Legendre transform of w.

up is differentiable p-a.e. and there is a unique optimal transport plan
o = (Id7 VUO)#,U‘

for Wa(u,v), where Vug is called Brenier's optimal transport map from p to
V.

13y . Brenier, Polar factorization and monotone rearrangement of vector-valued fl@ion(,)“
u awa

Comm. Pure Appl. Math. 1991




36. Application to Optimal Transport Theory

Regularity of Brenier's map

m Convex function up : Qx - RuU {+00} (defined above) solves the so-called
Monge-Ampére equation

g(Vu)detviu=f

in the sense of Brenier (viscosity sense).

W oug€ Cl’a(Q) by Caffarelli’s regularity theorem for Monge-Ampére equation.

loc

v

uOttawa



37. Future Research Plan

Recently, we ( with A. Gerolin and S. Di Marino) have obtained ¢
regularity results for potentials of entropy regularized optimal transport
problems with quadratic cost. We try to obtain other regularity results for the
same potential.
Seek for potential ways to show regularity of Kantorovich potentials (without
Caffarelli’s results)
Barycenter problems, optimal transport with Coulomb cost, and many others.
3
Regularity for variational functionals with nonstandard growth, and
nonvariational problems.?
Parabolic double phase type problems are being investigated intensively, like 2

uy — div (GI(WUDVU +a(x, t)Hl(Wu')Vu) =f

|V ul |Vul

1(C. De Filippis and G. Mingione, Nonuniformly elliptic Schauder theory, Invent. Math.,
(2023))

2J. Kinnunen, K. Moring and K, Wontae, Gradient higher integrability for degenerate
parabolic double-phase systems, ARMA, 2023

3G. Friesecke, Optimal transport: A comprehensive introduction to Modeling, A@s{f()ﬂil\\él
Simulation, Applicaions, SIAM, 2025




Thank you for your attention ©.

o
]
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