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variational approach: orlicz double phase functional



3. Orlicz double phase functional (ODP)

W 1,1
(Ω) ∋ v ↦ P(v ,Ω) ∶=

ˆ
Ω

[G(∣∇v ∣) + a(x)H(∣∇v ∣)] dx , (1)

where

1 Ω ⊂ Rn, n ≥ 2, is a bounded open subset

2 Sobolev space W 1,1
(Ω) = {v ∈ L1(Ω) ∶ weak derivative ∇v ∈ L1(Ω;Rn

)}

ˆ
Ω

v∇φdx = −

ˆ
Ω

∇vφdx ∀φ ∈ C∞c (Ω)

3 Φ(x , t) ∶= G(t) + a(x)H(t) (x ∈ Ω, t ⩾ 0)

4 G ,H ∶ [0,∞) → [0,∞) are N-functions of class C 1
([0,∞)) ∩ C 2

((0,∞))

such that there exist constants cG , cH satisyfing

1

cG
≤

G ′′(t)t
G ′(t)

≤ cG and
1

cH
≤

H ′′(t)t
H ′(t)

≤ cH (∀t > 0) (2)

5 0 ≤ a(⋅) ∈ C 0,α
(Ω) for some α ∈ (0,1].



4. Motivation12

Modelling of strongly anisotropic materials

Elasticity

Homogenization

Lavrentiev phenomenon

1(V.V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C.

R . Acad. Sci. Paris. Sér. I Math 316 (1993))
2(V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv.

Akad. Nauk SSSR Ser. Math. 1986)



5. Musialek-Orlicz space

We define the complementary function Φ∗ of Φ by

Φ∗(x , t) = sup
s≥0
(st −Φ(x , s))

Musielak-Orlicz space associated to Φ

LΦ(Ω) ∶= span

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

v ∶ Ω→ R ∶
ˆ

Ω

Φ(x , ∣v(x)∣)dx < ∞

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

.

Properties3

If Φ satisfies (2), then LΦ(Ω) is a Banach space under the Luxemburg norm

∥v∥LΦ(Ω) = inf
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

σ > 0 ∶

ˆ

Ω

Φ(x ,
∣v(x)∣

σ
) dx ≤ 1

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

.

If Φ satisfies (2), LΦ
∗

(Ω) is a Banach space under the corresponding

Luxemburg norm.



6. Musielak-Orlicz-Sobolev space

Musielak-Orlicz-Sobolev space associated to Φ

W 1,Φ
(Ω) ∶= span{v ∈ LΦ(Ω) ∶ weak gradient ∇v ∈ LΦ(Ω;Rn

)} .

Properties3

If Φ satisfies (2), W 1,Φ
(Ω) is a Banach space under the Luxemburg norm

∥v∥W 1,Φ(Ω) ∶= ∥v∥LΦ(Ω) + ∥∇v∥LΦ(Ω;Rn) .

If Φ satisfies (2), W 1,Φ∗
(Ω) is a Banach space.

Example:

If Φ(x , t) = tp (p > 1), then W 1,Φ
(Ω) =W 1,p

(Ω) and Φ∗(x , t) = t
p

p−1 .

In particular, Φ(x , t) = t2, then W 1,Φ
(Ω) =W 1,2

(Ω) = H1
(Ω) and

Φ∗(x , t) = t2.

3(P. Harjulehto and P. Hästö, Orlicz spaces and Generalized Orlicz spaces, Lecture notes in

Mathematics, 2019)



7. Principle question

Q1 Discovering suitable optimal conditions to be replaced on nonlinearity

under which we prove

Q2 a local minimizer u of ODP functional is regular suitably:

1 Existence of a solution in a given class of functions,

2 Uniqueness of minima satisfying same boundary condition,

3 Boundedness,

4 Harnack’s inequality,

5 Hölder continuity,

6 Sobolev regularity,

7 Lipschitz regularity,

8 Gradient Hölder continuity,

9 Smoothness and analiticity if they are obtainable.



8. Minima

Definition of a minimizer4

A function u ∈W 1,1
(Ω) is a local minimizer of the functional P in (1) if

1. Φ(x , ∣∇u∣) = G(∣∇u∣) + a(x)H(∣∇u∣) ∈ L1(Ω),

2. The minimality condition

ˆ

supp(u−w)

Φ(x , ∣∇u∣)dx ≤

ˆ

supp(u−w)

Φ(x , ∣∇w ∣)dx

is satisfied whenever w ∈W 1,1
(Ω) is such that supp(u −w) ⋐ Ω.

4(E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing, 2003)



9. Euler-Lagrange equation

Euler-Lagrange equation

Let u ∈W 1,1
(Ω) be a local minimizer of ODP functional P. A function

R ∋ t ↦ f (t) ∶= P(u + tφ,Ω) attains its minimimum at t = 0 for every φ ∈ C∞0 (Ω).
Then ˆ

Ω

⟨

G ′(∣∇u∣)
∣∇u∣

∇u + a(x)
H ′(∣∇u∣)
∣∇u∣

∇u,∇φ⟩ = 0 (∀φ ∈ C∞0 (Ω))

Definition of a weak solution

u ∈W 1,1
(Ω) is called a weak solution of Orlicz double phase equation

div(
G ′(∣∇u∣)
∣∇u∣

∇u + a(x)
H ′(∣∇u∣)
∣∇u∣

∇u) = 0 in Ω (3)

if ˆ

Ω

⟨

G ′(∣∇u∣)
∣∇u∣

∇u + a(x)
H ′(∣∇u∣)
∣∇u∣

∇u,∇φ⟩ = 0

holds true for all φ ∈W 1,1
0 (Ω) with Φ(x , ∣∇φ∣) ∈ L1(Ω).



10. Hölder continuity of minima

Theorem 1 (B.-Byun, [Memoirs of AMS 2025])

Let u ∈W 1,1
(Ω) be a local minimizer of ODP functional P or a weak solution of

ODP equation. If one of the following assumptions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

sup
ρ>0

H(ρ)

G(ρ) + [G(ρ)]1+
α
n
< ∞,

sup
ρ>0

H(ρ)

G(ρ) + ρ
ακ
n+κG(ρ)

< ∞ and u ∈ Lκ(Ω)

or

sup
ρ>0

H(ρ)

G(ρ) + ραG(ρ)
< ∞ and u ∈ L∞(Ω)

(4a)

(4b)

(4c)

is satisfied, then u ∈ C 0,θ
loc (Ω) for some θ ∈ (0,1). Moreover, for every Ω0 ⋐ Ω, we

have

∥u∥L∞(Ω0) + [u]C 0,θ(Ω0) ≤ C(data,Ω0)



11. Harnack’s inequality

Theorem 2 (B.-Byun, [Memoirs of AMS 2025])

Let u ∈W 1,1
(Ω) be a nonnegative local minimizer of ODP functional P or a

nonnegative weak solution of ODP equation. If one of the following assumptions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

sup
ρ>0

H(ρ)

G(ρ) + [G(ρ)]1+
α
n
< ∞,

sup
ρ>0

H(ρ)

G(ρ) + ραG(ρ)
< ∞ and u ∈ L∞(Ω),

sup
ρ>0

H(ρ)

G(ρ) + ρ
ακ
n+κG(ρ)

< ∞ and u ∈ Lκ(Ω),

sup
ρ>0

H(ρ)

G(ρ) + ρ
α

1−γ G(ρ)
< ∞ and u ∈ C 0,γ

(Ω)

(5a)

(5b)

(5c)

(5d)

is satisfied, for every ball BR ⊂ Ω0 ⋐ Ω, we have

sup
BR

u ≤ c(data,Ω0) inf
BR

u.



12. Morrey decay

Theorem 3 (B.-Byun, [Memoirs of AMS 2025])

Let u ∈W 1,1
(Ω) be a local minimizer of ODP functional P or a weak solution of

ODP equation. If one of the following assumptions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

sup
ρ>0

H(ρ)

G(ρ) + [G(ρ)]1+
α
n
< ∞,

sup
ρ>0

H(ρ)

G(ρ) + ραG(ρ)
< ∞ and u ∈ L∞(Ω),

sup
ρ>0

H(ρ)

G(ρ) + ρ
ακ
n+κG(ρ)

< ∞ and u ∈ Lκ(Ω),

sup
ρ>0

H(ρ)

G(ρ) + ρ
α

1−γ G(ρ)
< ∞ and u ∈ C 0,γ

(Ω)

(6a)

(6b)

(6c)

(6d)

is satisfied, then u ∈ C 0,θ
loc (Ω) for every θ ∈ (0,1). Moreover, for every σ ∈ (0,n), it

holds, whenever Br ⊂ BR ⋐ Ω with R ≤ 1 are concentric balls,

ˆ
Br

Φ(x , ∣∇u∣)dx ≲ (
r

R
)

n−σ ˆ
BR

Φ(x , ∣∇u∣)dx



13. Maximal regularity

Theorem 4 (B.-Byun, [Memoirs of AMS 2025])

Let u ∈W 1,1
(Ω) be a local minimizer of ODP functional P or a weak solution of

ODP equation. If any of the following assumptions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

sup
ρ>0

H(ρ)

G(ρ) + [G(ρ)]1+
α
n
< ∞,

sup
ρ>0

H(ρ)

G(ρ) + ραG(ρ)
< ∞ and u ∈ L∞(Ω),

sup
ρ>0

H(ρ)

G(ρ) + ρ
ακ
n+κG(ρ)

< ∞ and u ∈ Lκ(Ω),

or

sup
ρ>0

H(ρ)

G(ρ) + ρ
α

1−γ G(ρ)
< ∞ and u ∈ C 0,γ

(Ω)

(7a)

(7b)

(7c)

(7d)

is satisfied, then there exists an exponent θ ≡ θ(n, sG , sH , α) ∈ (0,1) such that

∇u ∈ C 0,θ
loc (Ω).



special functionals



15. Special Double phase functionals

(p,q)-double phase functional introduced by Zhikov is the hardest one to treat

W 1,1
(Ω) ∋ v ↦

ˆ

Ω

(∣∇v ∣p + a(x)∣∇v ∣q) dx , 1 < p ≤ q,

and its borderline case

W 1,1
(Ω) ∋ v ↦

ˆ

Ω

(∣∇v ∣p + a(x)∣∇v ∣p log(e + ∣∇v ∣)) dx , 1 < p



16. References for special double phase functionals



17. Laplacean: Φ(x , t) = tp or G(t)

p-Laplace energy or equation5:

W 1,1
(Ω) ∋ v ↦

ˆ
Ω

∣∇v ∣p dx ←→ div(∣∇v ∣p−2∇v) = 0 in Ω

Motivation: Conformal Geometry, Optimal Matching problem

(Ladyzheskaya, Uraltseva, Evans, Giaquinta, Giusti, Lewis, Lindqvist,

Manfredi, Uhlenbeck, and many others)

G -Laplace energy or equation5:

W 1,1
(Ω) ∋ v ↦

ˆ
Ω

G(∣∇v ∣)dx ←→ div(
G ′(∣∇v ∣)
∣∇v ∣

∇v) = 0 in Ω

(Diening, Stroffolini, Verde, Lieberman, Byun, and many others)

5(G. Mingione and V. Radulescu, Recent developments in problems with nonstandard growth

and nonuniform ellipticity, JMAA, 2021)



18. Many other examples

Φ(x , t) = tp logℓ(e + t) + a(x)tq logm(e + t) (Zygmund double phase)

Φ(x , t) = G(t) + a(x)G(t) log(e + t)

Φ(x , t) = G(t) + a(x)G(t) log(e +G(t)) so on...

Multi-phase functionals such as Φ(x , t) = G(t) + a(x)Ha(t) + b(x)Hb(t)

However, what happens if G ,H do not satisfy the assumption (2)?

For instance, double phase functional at linear growth given by

W 1,1
(Ω) ∋ v ↦

ˆ

Ω

(∣∇v ∣ log(e + ∣∇v ∣) + a(x)∣∇v ∣q)dx

is investigated, see a recent reference 67.

6(G. Mingione and C. De Filippis, Regularity for double phase problems at nearly linear

growth, ARMA, 2023)
7(G. Mingione and C. De Filippis, Nonuniformly elliptic Schauder theory, Invent. Math. 2023)



19. Key steps for proving Theorem 1-4

1 Absence of Lavrentiev phenomenon.

2 Sobolev-Poincaré type inequalities.

3 Caccioppoli type inequality.

4 Local boundedness of minima.

5 Almost standard Caccioppoli inequality.

6 Hölder continuity of minima (C 0,θ
loc -regularity for some θ ∈ (0,1)).

7 Harnack’s inequality.

8 Harmonic type approximation.

9 Morrey Decay estimates (C 0,θ
loc -regularity for any θ ∈ (0,1)).

10 C 1,θ
loc -regularity of minima.



starting point: de giorgi-nash-moser theory



21. Hilbert’s 19th problem of regularity

Let us consider the following functional

v ↦ F(v) ∶=

ˆ
Ω

F (∇v)dx ,

where F ∶ Ω ×Rn
→ R is analytic, convex and det∇2F > 0.

1 Laplace equation: ∆u = 0 corresponds to F (ξ) = ∣ξ∣2

1 Minimal surface equation: (δij −
uiujuij

1 + ∣∇u∣2
)uij = 0 corresponds to

F (ξ) =
√

1 + ∣ξ∣2

Hilbert’s 19th question

Are minima of the variational integral F are analytic? or Whether all such

Euler-Lagrange equations

div(∇F (∇v)) = 0

admit only analytic solutions?

1(E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing, 2003)



22. Early answers

Bernstein, 1904: C 3 solutions are analytic in two dimensional case

Hopf, Schauder, Caccioppoli, Morrey, Leray, Liechtenstein (many others)

Final outcome: C 1,α
Ô⇒ Analytic.

Using the difference quotient techniques, we can show a minimizer u of the

functional

v ↦

ˆ
Ω

F (∇v)dx

solves Euler-Lagrange equation

div(∇F (∇u)) = 0

and therefore every component ∇su solves

∇i(aij(x)∇jv) = 0 with aij(x) = Fξiξj (∇u(x))



23. Theorem (De Giorgi-Nash-Moser)

Theorem (De Giorgi 1956, Nash 1957)

Let v ∈W 1,2
(Ω) be a weak solution of the equation

∇i (aij(x)∇jv) = 0 in Ω,

where

ν∣ξ∣2 ≤ aij(x)ξiξj ≤ L∣ξ∣
2
(0 < ν ≤ L).

Then there exists an exponent α ≡ α(n,L/ν) ∈ (0,1) such that

sup
x∈Ω0

∣v(x)∣ + sup
x,y∈Ω0

∣v(x) − v(y)∣

∣x − y ∣α
≤ c(n, ν,L,Ω0) ∥v∥L2(Ω) (Ω0 ⋐ Ω)

Remark
De Giorgi’s theorem above concerns the regularity for uniformly elliptic linear

equations. However, the linearity does not play a role in his proof ,.



nonvariational approach: theory of viscosity solutions



25. A short guide to viscosity solutions

The theory of viscosity solutions applies to certain partial differential equations of

the form

F(x ,u,∇u,∇2u) = 0 in Ω ⊂ Rn, (8)

where

F ≡ F(x , r , ξ,M) ∶ Ω ×R ×Rn
× S(n) → R satisfies monotonicity condition

F(x , r , ξ,N) ⩽ F(x , s, ξ,M) whenever r ⩽ s and M ⩽ N,

where r , s ∈ R, x ∈ Ω, ξ ∈ Rn and M,N ∈ S(n).

u stands for a real-valued continuous unknown function defined on Ω

Gradient of u: ∇u = ( ∂u
∂xi
)

Hessian of u: ∇2u = ( ∂2u
∂xi∂xj

)



26. Examples

Laplace equation: F(x , r , ξ,M) = − tr(M)

∆u = 0

p-Laplace equation: F(x , r , ξ,M) = −∣ξ∣p−2 tr(M) + (p − 2)∣ξ∣p−4 tr((ξ ⊗ ξ)M)

−∣∇u∣p−2∆u + (p − 2)∣∇u∣p−4 tr((∇u ⊗∇u)∇2u) = 0

Hamilton-Jacobi-Bellman or Isaac equations for stochastic control and

stochastic differential games.

Monge-Ampére equation

F(x , r , ξ,M) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

−det(M) + f (x , r , ξ) if M ≥ 0

+∞ otherwise

det(∇2u) = f (x ,u,∇u) (u is convex)

Fully nonlinear elliptic equation: F(x , r , ξ,M) satisfies

λ tr(N) ≤ F (x , r , ξ,M) − F (x , r , ξ,M +N) ≤ Λ tr(N) (∀N ≥ 0).



27. Viscosity solutions

Definition of a viscosity solution8

A continuous function u is called a viscosity supersolution of (8) if for any

x0 ∈ Ω, for all ϕ ∈ C
2
(Ω) such that u − ϕ has a local minimum at x0, there holds

F(x0,u(x0),∇ϕ(x0),∇
2ϕ(x0)) ⩾ 0.

A continuous function u is called a viscosity subsolution of (8) if for any x0 ∈ Ω,

for all ϕ ∈ C 2
(Ω) such that u − ϕ has a local maximum at x0, there holds

F(x0,u(x0),∇ϕ(x0),∇
2ϕ(x0)) ⩽ 0.

We say that u ∈ C(Ω) is a viscosity solution of (8) if u is a viscosity

supersolution and subsolution simultaneously.

8(M.G. Crandal, H. Ishii and P.L. Lions, Bulletin of the AMS, 1992)



28. A class of nonlinear elliptic equations

We consider a class of singular/degenerate nonlinear elliptic equations

F(x ,u,∇u,∇2u) ∶= A(x , ,u,∇u)F (∇2u) − f (x) = 0 (9)

where

A(x ,u,∇u)∣∇u∣2 ≈ Φ(x , ∣∇u∣) = G(∣∇u∣) + a(x)H(∣∇u∣) (Orlicz double phase

integrand function)

F ∶ S(n) → R is an operator satisfying uniform ellipticity condition

λ tr(N) ≤ F (M) − F (M +N) ≤ Λ tr(N) (∀0 ≤ N ∈ S(n))

f ∈ L∞(Ω)

Motivation:

Transmission problems for diffusion processes in heterogeneous media with

applications to

thermal

electromagnetic conductivity

composite materials



29. Some recent results

Theorem (B.-Byun-K.-A. Lee-S.-C. Lee)

Let u ∈ C(Ω) be a viscosity solution of (9) under suitably optimal assumptions on

nonlineaty.

u ∈ C 1,α
loc (Ω)

10.

The existence of solution and global C 1,α estimate with Dirichlet boundary

condition11.

Basic ideas of the proof

Ishii-Lions techniques and compactness arguments.

Peron’s method for the existence of a solution.

,

10B., S.S.Byun, K.A. Lee and S.C. Lee, C1,α-regularity for a class of degenerate/singular fully

non-linear elliptic equations, IFB 2024)
11B., S.S.Byun, K.A. Lee and S.C. Lee, Global regularity results for a class of

singular/degenerate fully nonlinear elliptic equations, MZ 2024



starting point: krylov-safanov theorem



31. Krylov-Safanov theorem and Caffarelli’s theorem

Theorem(Caffarelli, [Anal. Math. 1989])

Any u ∈ C(Ω) viscosity solution of

F(x ,u,∇u,∇2u) ∶= F (∇2u) = 0 in Ω

is in u ∈ C 1,α
loc (Ω) for α ≡ α(n, ν,L) ∈ (0,1].

Theorem (Krylov-Safanov 12)

Let u ∈ C(Ω) be a viscosity solution to

F(x ,∇2u) ∶= −aij(x)∂iju = 0 in Ω ⊂ Rn.

where there exist constant 0 < λ ≤ Λ such that

λ∣ξ∣2 ⩽ aij(x)ξiξj ⩽ Λ∣ξ∣
2
(∀x ∈ Ω, ξ ∈ Rn

)

Then we have u ∈ C 0,α
loc (Ω) and it satisfies Harnack’s inequality.

12(N.V. Krylov, Lectures on elliptic and parabolic PDEs in Hölder spaces, Graduate studies in

Mathematics AMS, 1996)



monge-ampére equation and optimal transport



33. Regularity for Monge-Amperé equation

F(x ,u,∇u,∇2u) ∶= −det(∇2u) + f (x) = 0 in Ω

where

u is convex

0 < λ < f ∈ L∞(Ω) < Λ.

Theorem (Caffarelli [Ann. Math. 1990])

Let u be a strictly convex function satisfying Monge-Ampére equation above in

viscosity sense. Then there exists α ≡ α(n, λ,Λ) ∈ (0,1) such that u ∈ C 1,α
loc (Ω).

More precisely, for every Ω0 ⋐ Ω, there exists a constant C depending only n, λ,Λ,

Ω0 and the modulus of convexity of u such that

sup
x≠y∈Ω0

∣∇u(x) − ∇u(y)∣

∣x − y ∣α
≤ C

Remark

There are many other discovered regularity results such as C∞, C 2,α, W 2,p, W 2,1

so on (Caffarelli, Figalli, De Philippis, Wang, many others)



34. Application to Optimal Transport Theory

W2
2(µ, ν) ∶= inf

π∈Π(µ,ν)

ˆ
ΩX×ΩY

∣x − y ∣2

2
dπ(x , y),

where

the set of transport plans

Π(µ, ν) ∶= {π ∈ P(ΩX ×ΩY ) ∶ π(A ×ΩY ) = µ(A) and π(ΩX ×B) = ν(B)}

( for any A ⊂ ΩX and B ⊂ ΩY measurable subsets ).

Open, bounded, and convex sets ΩX ,ΩY ⊂ Rn

Probability measures µ ∈ P(ΩX ) and ν ∈ P(ΩY )

µ = f Ln and ν = gLn with spt f = ΩX and spt g = ΩY

There are positive constants λ and Λ such that

λ ≤ f ,g ≤ Λ

.



35. Application to Optimal Transport Theory

Theorem(Brenier 13)

1 π0 ∈ Π(µ, ν) is an optimal transport plan for W2(µ, ν) if and only if

spt(π0) ⊂ Graph(∂u0) ∶= {(x , y) ∈ ΩX ×ΩY ∶ y ∈ ∂u0(x)}

= {(x , y) ∈ ΩX ×ΩY ∶ u0(x) + v0(y) = ⟨x , y⟩}

for a convex semicontinuous function u0 ∶ ΩX → R, where
v0 ∶= u

∗

0 is the Legendre transform of u0.

2 u0 is differentiable µ-a.e. and there is a unique optimal transport plan

π0 ∶= (Id,∇u0)#µ

for W2(µ, ν), where ∇u0 is called Brenier’s optimal transport map from µ to

ν.

13Y. Brenier, Polar factorization and monotone rearrangement of vector-valued function,

Comm. Pure Appl. Math. 1991



36. Application to Optimal Transport Theory

Regularity of Brenier’s map

Convex function u0 ∶ ΩX → R ∪ {+∞} (defined above) solves the so-called

Monge-Ampére equation

g(∇u)det∇2u = f

in the sense of Brenier (viscosity sense).

u0 ∈ C
1,α
loc (Ω) by Caffarelli’s regularity theorem for Monge-Ampére equation.



37. Future Research Plan

Recently, we ( with A. Gerolin and S. Di Marino) have obtained C 1,α
loc

regularity results for potentials of entropy regularized optimal transport

problems with quadratic cost. We try to obtain other regularity results for the

same potential.

Seek for potential ways to show regularity of Kantorovich potentials (without

Caffarelli’s results)

Barycenter problems, optimal transport with Coulomb cost, and many others.
3

Regularity for variational functionals with nonstandard growth, and

nonvariational problems.1

Parabolic double phase type problems are being investigated intensively, like 2

ut − div(
G ′(∣∇u∣)
∣∇u∣

∇u + a(x , t)
H ′(∣∇u∣)
∣∇u∣

∇u) = f

1(C. De Filippis and G. Mingione, Nonuniformly elliptic Schauder theory, Invent. Math.,

(2023))
2J. Kinnunen, K. Moring and K, Wontae, Gradient higher integrability for degenerate

parabolic double-phase systems, ARMA, 2023
3G. Friesecke, Optimal transport: A comprehensive introduction to Modeling, Analysis,

Simulation, Applicaions, SIAM, 2025



Thank you for your attention ,.
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