
Delft Institute of Applied Mathematics
TU Delft

Representation Equivalent Neural Operators
A framework for Alias-free Operator Learning
Francesca Bartolucci



In collaboration with

Bogdan Raonić Emmanuel de Bézenac Roberto Molinaro
ETH Zürich INRIA Jua

Rima Alaifari Siddhartha Mishra
RWTH Aachen ETH ZürichDelft Institute of Applied Mathematics

TU Delft September 4 2025 1/20



Motivation

● Various scientific phenomena can be described by PDEs
● Classically, numerical methods are used to approximate solution operators
● Classical numerical methods can be computationally prohibitively expensive
● Replace classical computationally intensive algorithms with fast, robust data-driven surrogate

models, which enables their use in time-critical applications
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Operator learning in a nutshell

● U ∶H → K operator between infinite-dimensional spaces (e.g. solution operators of PDEs)
● Goal: build an approximation U∗ ≈ U from input-output pairs

{ui, U(ui)}N
i=1

● How: construct a neural operator Uθ ∶H → K as a sequence of layers

Uθ = UL ○UL−1 ○ . . . ○U1, θ ∈ Θ,

and minimize
1
N

N

∑
i=1
∥U(ui) −Uθ(ui)∥2K

● as in classical NNs, a neural operator is defined layer-wise
● ...but novelty: layers are defined as operators between infinite-dimensional spaces
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Example: Fourier neural operators

● state of the art for learning solution operators of PDEs
● layer of Fourier neural operators [Li et al., ICLR 2021]:

Uℓ = σ(F−1(Rθ ⊙F)), ℓ = 1, . . . , L,

● how are FNOs implemented?
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The problem

● In practice, we have only access to discrete representations of functions (e.g. grid values). . .

● Loose discretizations uθ ≈ Uθ can lead to mismatches between continuous models and their
implemented discretizations, compromising the underlying model Uθ
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FNOs in practice: activation & aliasing

● in practice, all computations done discretely: uℓ = σ(F −1(Rθ ⊙ F ))
● functions sampled on a grid: {f(nT )}n∈Z
● DFT instead of Fourier transform
● activations computed on unchanged grid: {σ(f(nT ))}n∈Z

H K

ℓ2(Z) ℓ2(Z)

σ

? ?

σ

? ?
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FNOs in practice: activation & aliasing

● in practice, all computations done discretely: uℓ = σ(F −1(Rθ ⊙ F ))
● functions sampled on a grid: {f(nT )}n∈Z
● DFT instead of Fourier transform
● activations computed on unchanged grid: {σ(f(nT ))}n∈Z

● activation functions increase bandwidth
● Uℓ and its discretization uℓ are inconsistent
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Consequences

● possible discrepancy between continuous and discrete levels

H K

H K

Uθ

? ?

uθ

? ?

● instead: enforce a continuous-discrete equivalence at any resolution

● can sampling/frame theory be leveraged to define a new class of neural operators?
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Excursion to sampling theory...

BΩ = {f ∈ L2(R)∶ suppf̂ ⊆ [−Ω,Ω]}
● WSK sampling theorem: f = ∑n∈Z f ( n

2Ω) sinc(2Ω ⋅ −n)

● Ψ = {ψn(x) = sinc(2Ωx − n)}n∈Z
● synthesis operator: TΨ∶ ℓ2(Z) → BΩ, TΨ({cn}n∈Z) = ∑n∈Z cnψn

● analysis operator: T ∗Ψ∶ BΩ → ℓ2(Z), T ∗Ψf = {⟨f,ψn⟩}n∈Z = {f ( n
2Ω)}n∈Z

● WSK sampling theorem: f = TΨT
∗
Ψf

BΩ BΩ

ℓ2(Z) ℓ2(Z)

Id

T∗Ψ

Id

TΨ
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Excursion to sampling theory...

● Ψ = {ψn(x) = sinc(2Ω(x − nT ))}n∈Z, 1/T < 2Ω
● synthesis operator: TΨ∶ ℓ2(Z) → BΩ, TΨ({cn}n∈Z) = ∑n∈Z cnψn

● analysis operator: T ∗Ψ∶ BΩ → ℓ2(Z), T ∗Ψf = {⟨f,ψn⟩}n∈Z = {f(nT ))}n∈Z

● TΨT
∗
Ψf = PMΨf, MΨ = span{ψn ∶ n ∈ Z}

The diagram
BΩ BΩ

ℓ2(Z) ℓ2(Z)

Id

T∗Ψ

Id

TΨ

no longer commutes
● aliasing error function for sampling f at the sampling rate 1/T

ε(f) = f − PMΨf
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Excursion to sampling theory...

The diagram
BΩ BΩ

ℓ2(Z) ℓ2(Z)

Id

T∗Ψ

Id

TΨ

no longer commutes
● aliasing error function for sampling f at the sampling rate 1/T

ε(f) = f − PMΨf
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Excursion to frame theory...

● Ψ = {ψi}i∈I

● synthesis operator: TΨ∶ ℓ2(I) → H, TΨ({ci}i∈I) = ∑i∈I ciψi

● analysis operator: T ∗Ψ∶H → ℓ2(I), T ∗Ψf = {⟨f,ψi⟩}i∈I

H H

ℓ2(I) ℓ2(I)

Id

T∗Ψ

Id

TΨ
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Excursion to frame theory...

● Ψ = {ψi}i∈I tight frame for the separable Hilbert space H

∑
i∈I
∣⟨f,ψi⟩∣2 = A∥f∥2, ∀f ∈ H

● synthesis operator: TΨ∶ ℓ2(I) → H, TΨ({ci}i∈I) = ∑i∈I ciψi

● analysis operator: T ∗Ψ∶H → ℓ2(I), T ∗Ψf = {⟨f,ψi⟩}i∈I

● reconstruction formula: f = 1
A
TΨT

∗
Ψf = 1

A ∑i∈I⟨f,ψi⟩ ψi

H H

ℓ2(I) ℓ2(I)

Id

T∗Ψ

Id

TΨ

● choice of a frame = continuous-discrete equivalence between f and {⟨f,ψi⟩}i∈I
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Excursion to frame theory...

● Ψ = {ψi}i∈I tight frame sequence for H (tight frame forMΨ ∶= spani∈I{ψi})
● synthesis operator: TΨ∶ ℓ2(I) → H, TΨ({ci}i∈I) = ∑i∈I ciψi

● analysis operator: T ∗Ψ∶H → ℓ2(I), T ∗Ψf = {⟨f,ψi⟩}i∈I

● PMΨf = 1
A
TΨT

∗
Ψf = 1

A ∑i∈I⟨f,ψi⟩ ψi

The diagram
H H

ℓ2(I) ℓ2(I)

Id

T∗Ψ

Id

TΨ

no longer commutes
● aliasing error function for f w.r.t. the frame sequence Ψ = {ψi}i∈I

ε(f) = f − PMΨf

Delft Institute of Applied Mathematics
TU Delft September 4 2025 14/20



Excursion to frame theory...

The diagram
H H

ℓ2(I) ℓ2(I)

Id

T∗Ψ

Id

TΨ

no longer commutes
● aliasing error function for f w.r.t. the frame sequence Ψ = {ψi}i∈I

ε(f) = f − PMΨf

● in the presence of aliasing, continuous and discrete levels are inconsistent
● if ε(f) ≡ 0, we say: continuous-discrete equivalence between f and its frame coefficients
● we generalize this concepts to operators: aliasing error operator
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Framework for operators

● U ∶DomU ⊆ H → K
● Ψ = {ψi}i∈I ⊆ H and Φ = {ϕk}k∈K ⊆ K tight frame sequences
● u∶RanT ∗Ψ → RanT ∗Φ

H K

ℓ2(I) ℓ2(K)

U

T∗Ψ

u

TΦ

● aliasing error operator of U w.r.t. the discretization u

ε(U,u,Ψ,Φ) = U − TΦ ○ u ○ T ∗Ψ

● ε(U,u,Ψ,Φ) ≡ 0Ô⇒ u = T ∗Φ ○U ○ TΨ

● ε(U,u,Ψ,Φ) = U − PMΦ ○U ○ PMΨ

● u = T ∗Φ ○U ○ TΨ ∧ (DomU ⊆MΨ ∧ RanU ⊆MΦ) Ô⇒ ε(U,u,Ψ,Φ) ≡ 0
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Representation-equivalent Neural Operators

Let’s go back to neural operators. . . build an approximation U∗ ≈ U from input-output pairs
{ui, U(ui)}N

i=1 with a neural operator Uθ ∶H → K
Uθ = UL ○UL−1 ○ . . . ○U1, θ ∈ Θ.

For every layer Uℓ∶Hℓ →Hℓ+1, ℓ = 1, . . . , L,
● discretize function spaces: choose frame sequences Ψℓ ⊆ Hℓ, Ψℓ+1 ⊆ Hℓ+1 such that

DomUℓ ⊆MΨℓ ∧ RanUℓ ⊆MΨℓ+1

● construct an alias-free discretization uℓ of Uℓ mapping frame coefficients to frame coefficients

Hℓ Hℓ+1

ℓ2(Iℓ) ℓ2(Iℓ+1)

Uℓ

T∗Ψℓ+1

uℓ

TΨℓ

● ε(Uℓ, uℓ,Ψℓ,Ψℓ+1) = 0 ∀ℓ = 1, . . . , LÔ⇒ ε(Uθ, uθ) = 0
● different choices of frames yield different alias-free discretizations
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Representation-equivalent Neural Operators
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Summary and outlook

● frame theory provides continuous-discrete equivalence and aliasing error for functions
● we generalize this concepts to operators
● define new framework of ReNOs
● Convolutional Neural Operators [Raonić et al., 2023]
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Convolutional Neural Operator

● Convolutional Neural Operators [Raonić et al., 2023]
● Layers of a CNO are defined as

Uℓ = Σℓ ○ Kℓ, ℓ = 1, . . . , L

● Kℓ∶ BΩ → BΩ convolution with discrete kernel ∑k
m,n=−k km,nδ( m

2Ω , n
2Ω )

● Σℓ∶ BΩ → BΩ, Σℓ = PBΩ ○ σ ○ PBΩ
with Ω > Ω
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Thank you for your time!
● F. Bartolucci, E. de Bézenac, B. Raonić, R. Molinaro, S. Mishra, R. Alaifari, Representation

Equivalent Neural Operators: a Framework for Alias-free Operator Learning, NeurIPS 2023
● B. Raonić, R. Molinaro, T. De Ryck, T. Rohner, F. Bartolucci, R. Alaifari, S. Mishra, E. de Bézenac,

Convolutional Neural Operators for robust and accurate learning of PDEs, NeurIPS 2023
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