

Representation Equivalent Neural Operators A framework for Alias-free Operator Learning

Francesca Bartolucci

In collaboration with

Bogdan Raonić ETH Zürich

Emmanuel de Bézenac INRIA

Roberto Molinaro Jua

Rima Alaifari
Delft institute of Applied Mathematics RWTH Aachen

Siddhartha Mishra ETH Zürich

Motivation

- Various scientific phenomena can be described by PDEs
- Classically, numerical methods are used to approximate solution operators
- Classical numerical methods can be computationally prohibitively expensive
- Replace classical computationally intensive algorithms with fast, robust data-driven surrogate models, which enables their use in time-critical applications

Operator learning in a nutshell

- U: H → K operator between infinite-dimensional spaces (e.g. solution operators of PDEs)
- Goal: build an approximation $U^* \approx U$ from input-output pairs

$$\{u_i, U(u_i)\}_{i=1}^N$$

• How: construct a neural operator U_{θ} : $\mathcal{H} \to \mathcal{K}$ as a sequence of layers

$$U_{\theta} = U_{L} \circ U_{L-1} \circ \ldots \circ U_{1}, \qquad \theta \in \Theta,$$

and minimize

$$\frac{1}{N} \sum_{i=1}^{N} \|U(u_i) - U_{\theta}(u_i)\|_{\mathcal{K}}^2$$

- as in classical NNs, a neural operator is defined layer-wise
- ...but novelty: layers are defined as operators between infinite-dimensional spaces

Example: Fourier neural operators

- state of the art for learning solution operators of PDEs
- layer of Fourier neural operators [Li et al., ICLR 2021]:

$$U_{\ell} = \sigma(\mathcal{F}^{-1}(\mathcal{R}_{\theta} \odot \mathcal{F})), \quad \ell = 1, \dots, L,$$

how are FNOs implemented?

The problem

• In practice, we have only access to discrete representations of functions (e.g. grid values)...

• Loose discretizations $u_{\theta} \approx U_{\theta}$ can lead to mismatches between continuous models and their implemented discretizations, compromising the underlying model U_{θ}

FNOs in practice: activation & aliasing

- in practice, all computations done discretely: $u_{\ell} = \sigma(F^{-1}(R_{\theta} \odot F))$
 - functions sampled on a grid: $\{f(nT)\}_{n\in\mathbb{Z}}$
 - · DFT instead of Fourier transform
 - activations computed on unchanged grid: $\{\sigma(f(nT))\}_{n\in\mathbb{Z}}$

FNOs in practice: activation & aliasing

- in practice, all computations done discretely: $u_{\ell} = \sigma(F^{-1}(R_{\theta} \odot F))$
 - functions sampled on a grid: $\{f(nT)\}_{n\in\mathbb{Z}}$
 - · DFT instead of Fourier transform
 - activations computed on unchanged grid: $\{\sigma(f(nT))\}_{n\in\mathbb{Z}}$

- · activation functions increase bandwidth
- U_{ℓ} and its discretization u_{ℓ} are inconsistent

Consequences

• possible discrepancy between continuous and discrete levels

• instead: enforce a continuous-discrete equivalence at any resolution

can sampling/frame theory be leveraged to define a new class of neural operators?

Excursion to sampling theory...

$$\mathcal{B}_{\Omega} = \{ f \in L^2(\mathbb{R}) : \mathsf{supp} \hat{f} \subseteq [-\Omega, \Omega] \}$$

• WSK sampling theorem: $f = \sum_{n \in \mathbb{Z}} f\left(\frac{n}{2\Omega}\right) \operatorname{sinc}(2\Omega \cdot -n)$

- $\Psi = \{\psi_n(x) = \operatorname{sinc}(2\Omega x n)\}_{n \in \mathbb{Z}}$
- synthesis operator: $T_{\Psi}: \ell^2(\mathbb{Z}) \to \mathcal{B}_{\Omega}, \quad T_{\Psi}(\{c_n\}_{n \in \mathbb{Z}}) = \sum_{n \in \mathbb{Z}} c_n \psi_n$
- analysis operator: $T_{\Psi}^* \colon \mathcal{B}_{\Omega} \to \ell^2(\mathbb{Z}), \quad T_{\Psi}^* f = \{\langle f, \psi_n \rangle\}_{n \in \mathbb{Z}} = \{f\left(\frac{n}{2\Omega}\right)\}_{n \in \mathbb{Z}}$
- WSK sampling theorem: $f = T_{\Psi}T_{\Psi}^*f$

Excursion to sampling theory...

- $\Psi = \{\psi_n(x) = \operatorname{sinc}(2\Omega(x nT))\}_{n \in \mathbb{Z}}, 1/T < 2\Omega$
- synthesis operator: $T_{\Psi}: \ell^2(\mathbb{Z}) \to \mathcal{B}_{\Omega}, \quad T_{\Psi}(\{c_n\}_{n \in \mathbb{Z}}) = \sum_{n \in \mathbb{Z}} c_n \psi_n$
- analysis operator: $T_{\Psi}^*: \mathcal{B}_{\Omega} \to \ell^2(\mathbb{Z}), \quad T_{\Psi}^* f = \{\langle f, \psi_n \rangle\}_{n \in \mathbb{Z}} = \{f(nT)\}_{n \in \mathbb{Z}}$
- $T_{\Psi}T_{\Psi}^*f = P_{\mathcal{M}_{\Psi}}f$, $\mathcal{M}_{\Psi} = \overline{\operatorname{span}\{\psi_n : n \in \mathbb{Z}\}}$

The diagram

no longer commutes

ullet aliasing error function for sampling f at the sampling rate 1/T

$$\varepsilon(f)$$
 = $f - \mathcal{P}_{\mathcal{M}_{\Psi}} f$

Excursion to sampling theory...

The diagram

no longer commutes

• aliasing error function for sampling f at the sampling rate 1/T

$$\varepsilon(f) = f - \mathcal{P}_{\mathcal{M}_{\Psi}} f$$

- $\bullet \quad \Psi = \{\psi_i\}_{i \in I}$
- synthesis operator: $T_{\Psi}: \ell^2(I) \to \mathcal{H}, \quad T_{\Psi}(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i \psi_i$
- analysis operator: $T_{\Psi}^*: \mathcal{H} \to \ell^2(I), \quad T_{\Psi}^*f = \{\langle f, \psi_i \rangle\}_{i \in I}$

$$\mathcal{H} \stackrel{\operatorname{Id}}{\longrightarrow} \mathcal{H}$$
 $T_{\Psi}^{*} \qquad \qquad T_{\Psi}$
 $\ell^{2}(I) \stackrel{\operatorname{Id}}{\longrightarrow} \ell^{2}(I)$

• $\Psi = \{\psi_i\}_{i \in I}$ tight frame for the separable Hilbert space \mathcal{H}

$$\sum_{i \in I} |\langle f, \psi_i \rangle|^2 = A \|f\|^2, \qquad \forall f \in \mathcal{H}$$

- synthesis operator: $T_{\Psi}: \ell^2(I) \to \mathcal{H}, \quad T_{\Psi}(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i \psi_i$
- analysis operator: $T_{\Psi}^*: \mathcal{H} \to \ell^2(I), \quad T_{\Psi}^* f = \{\langle f, \psi_i \rangle\}_{i \in I}$
- reconstruction formula: $f = \frac{1}{A} T_{\Psi} T_{\Psi}^* f = \frac{1}{A} \sum_{i \in I} \langle f, \psi_i \rangle \ \psi_i$

$$egin{aligned} \mathcal{H} & \stackrel{\operatorname{Id}}{\longrightarrow} \mathcal{H} \ \downarrow^{T_{\Psi}^{*}} & \downarrow^{T_{\eta}} \ \ell^{2}(I) & \stackrel{\operatorname{Id}}{\longrightarrow} \ell^{2}(I) \end{aligned}$$

• choice of a frame = continuous-discrete equivalence between f and $\{\langle f, \psi_i \rangle\}_{i \in I}$

- $\Psi = \{\psi_i\}_{i \in I}$ tight frame sequence for \mathcal{H} (tight frame for $\mathcal{M}_{\Psi} \coloneqq \overline{\operatorname{span}_{i \in I}\{\psi_i\}}$)
- synthesis operator: $T_{\Psi}: \ell^2(I) \to \mathcal{H}, \quad T_{\Psi}(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i \psi_i$
- analysis operator: $T_{\Psi}^*: \mathcal{H} \to \ell^2(I), \quad T_{\Psi}^* f = \{\langle f, \psi_i \rangle\}_{i \in I}$
- $\mathcal{P}_{\mathcal{M}_{\Psi}} f = \frac{1}{A} T_{\Psi} T_{\Psi}^* f = \frac{1}{A} \sum_{i \in I} \langle f, \psi_i \rangle \psi_i$

The diagram

no longer commutes

• aliasing error function for f w.r.t. the frame sequence Ψ = $\{\psi_i\}_{i\in I}$

$$\varepsilon(f)$$
 = $f - \mathcal{P}_{\mathcal{M}_{\Psi}} f$

The diagram

$$\mathcal{H} \xrightarrow{\operatorname{Id}} \mathcal{H}$$
 $\downarrow^{T_{\Psi}^{*}} \qquad \qquad \downarrow^{T_{\Pi}^{*}} \qquad \qquad \downarrow^{T_{\Pi}^{*}}$
 $\ell^{2}(I) \xrightarrow{\operatorname{Id}} \ell^{2}(I)$

no longer commutes

• aliasing error function for f w.r.t. the frame sequence $\Psi = \{\psi_i\}_{i \in I}$

$$\varepsilon(f) = f - \mathcal{P}_{\mathcal{M}_{\Psi}} f$$

- in the presence of aliasing, continuous and discrete levels are inconsistent
- if $\varepsilon(f) \equiv 0$, we say: continuous-discrete equivalence between f and its frame coefficients
- we generalize this concepts to operators: aliasing error operator

Framework for operators

- $U: \text{Dom } U \subseteq \mathcal{H} \to \mathcal{K}$
- $\Psi = \{\psi_i\}_{i \in I} \subseteq \mathcal{H}$ and $\Phi = \{\phi_k\}_{k \in K} \subseteq \mathcal{K}$ tight frame sequences
- $u: \operatorname{Ran} T_{\Psi}^* \to \operatorname{Ran} T_{\Phi}^*$

$$\begin{array}{ccc} \mathcal{H} & \stackrel{U}{\longrightarrow} \mathcal{K} \\ \downarrow^{T_{\Psi}^{*}} & \downarrow^{T_{Q}} \\ \downarrow^{2}(I) & \stackrel{u}{\longrightarrow} \ell^{2}(K) \end{array}$$

• aliasing error operator of U w.r.t. the discretization u

$$\varepsilon(U, u, \Psi, \Phi) = U - T_{\Phi} \circ u \circ T_{\Psi}^*$$

- $\varepsilon(U, u, \Psi, \Phi) \equiv 0 \Longrightarrow u = T_{\Phi}^* \circ U \circ T_{\Psi}$
- $\varepsilon(U, u, \Psi, \Phi) = U \mathcal{P}_{\mathcal{M}_{\Phi}} \circ U \circ \mathcal{P}_{\mathcal{M}_{\Psi}}$
- $u = T_{\Phi}^* \circ U \circ T_{\Psi} \wedge (\operatorname{Dom} U \subseteq \mathcal{M}_{\Psi} \wedge \operatorname{Ran} U \subseteq \mathcal{M}_{\Phi}) \Longrightarrow \varepsilon(U, u, \Psi, \Phi) \equiv 0$

Representation-equivalent Neural Operators

Let's go back to neural operators...build an approximation $U^* \approx U$ from input-output pairs $\{u_i, U(u_i)\}_{i=1}^N$ with a neural operator $U_\theta \colon \mathcal{H} \to \mathcal{K}$

$$U_{\theta} = U_{L} \circ U_{L-1} \circ \ldots \circ U_{1}, \quad \theta \in \Theta.$$

For every layer $U_{\ell}: \mathcal{H}_{\ell} \to \mathcal{H}_{\ell+1}, \ell = 1, \ldots, L$,

• discretize function spaces: choose frame sequences $\Psi_{\ell} \subseteq \mathcal{H}_{\ell}, \ \Psi_{\ell+1} \subseteq \mathcal{H}_{\ell+1}$ such that

$$Dom U_{\ell} \subseteq \mathcal{M}_{\Psi_{\ell}} \wedge Ran U_{\ell} \subseteq \mathcal{M}_{\Psi_{\ell+1}}$$

• construct an alias-free discretization u_ℓ of U_ℓ mapping frame coefficients to frame coefficients

$$\mathcal{H}_{\ell} \stackrel{U_{\ell}}{\longrightarrow} \mathcal{H}_{\ell+1}$$
 $\uparrow^{T_{\Psi_{\ell}}} \qquad \qquad \uparrow^{T_{\Psi_{\ell+1}}}$
 $\downarrow^{2}(I_{\ell}) \stackrel{u_{\ell}}{\longrightarrow} \ell^{2}(I_{\ell+1})$

- $\varepsilon(U_{\ell}, u_{\ell}, \Psi_{\ell}, \Psi_{\ell+1}) = 0 \quad \forall \ell = 1, \dots, L \Longrightarrow \varepsilon(U_{\theta}, u_{\theta}) = 0$
- different choices of frames yield different alias-free discretizations

Representation-equivalent Neural Operators

Summary and outlook

- frame theory provides continuous-discrete equivalence and aliasing error for functions
- we generalize this concepts to operators
- define new framework of ReNOs
- Convolutional Neural Operators [Raonić et al., 2023]

Convolutional Neural Operator

- Convolutional Neural Operators [Raonić et al., 2023]
- Layers of a CNO are defined as

$$U_{\ell} = \Sigma_{\ell} \circ \mathcal{K}_{\ell}, \quad \ell = 1, \dots, L$$

- $\mathcal{K}_{\ell}:\mathcal{B}_{\Omega}\to\mathcal{B}_{\Omega}$ convolution with discrete kernel $\sum_{m,n=-k}^{k}k_{m,n}\delta_{(\frac{m}{2\Omega},\frac{n}{2\Omega})}$
- $\bullet \ \Sigma_{\ell} \colon \mathcal{B}_{\Omega} \to \mathcal{B}_{\Omega}, \ \Sigma_{\ell} = \mathcal{P}_{\mathcal{B}_{\Omega}} \circ \sigma \circ \mathcal{P}_{\mathcal{B}_{\overline{\Omega}}} \ \text{with} \ \overline{\Omega} > \Omega$

Thank you for your time!

- F. Bartolucci, E. de Bézenac, B. Raonić, R. Molinaro, S. Mishra, R. Alaifari, Representation Equivalent Neural Operators: a Framework for Alias-free Operator Learning, NeurIPS 2023
- B. Raonić, R. Molinaro, T. De Ryck, T. Rohner, F. Bartolucci, R. Alaifari, S. Mishra, E. de Bézenac,
 Convolutional Neural Operators for robust and accurate learning of PDEs, NeurIPS 2023

