On skew constacyclic codes and their surprising connection to nonassociative algebra

S. Pumplün, University of Nottingham

University of Ottawa, September 2025

Content:

- I. Linear Codes
- II. Skew-polynomial rings
- III. The Petit algebras $K[t; \sigma]/K[t; \sigma](t^n a)$
- IV. Hamming weight preserving ring isomorphisms (joint with M Nevins)
- V. Equivalent and isometric skew constacyclic codes (joint with M Nevins)
- VI. Outlook: skew polycyclic codes

Linear Codes

Let K be a field, n > 1 an integer. A *linear code* C of length n over K is a free sub vector space of K^n .

If for all $(c_0, \ldots, c_{n-1}) \in C$, also $(c_{n-1}, c_0, c_1, \ldots, c_{n-2}) \in C$, then C is called a *cyclic code*.

Equivalently, a cyclic code is an ideal in the ring

$$K[t]/(t^n-1).$$

Why?

Identify $c = (c_0, \ldots, c_{n-1}) \in C$ with the polynomial $\sum_{i=0}^{n-1} c_i t^i \in K[t]$ via the K-vector space isomorphism

$$\Phi: K^n \longrightarrow K[t]/K[t](t^n - 1) = \{c(t) \in K[t] \mid deg(c) < n\},\$$

$$\Phi(c_0, c_1, \dots, c_{n-1}) = c(t) = \sum_{i=0}^{n-1} c_i t^i.$$

"Cyclically shifting" a codeword $c = (c_0, \ldots, c_{n-1})$ is the same as multiplying c(t) by t in $K[t]/K[t](t^n - 1)$.

Let C(t) be the set of polynomials $c(t) = \sum_{i=0}^{n-1} c_i t^i$ associated to the codewords $(c_0, \ldots, c_{n-1}) \in C$ of a linear code C of length n over K.

There is a one-to-one correspondence between the cyclic codes of length n over K and the ideals of $K[t]/K[t](t^n-1)$, because for cyclic codes, the set C(t) is an ideal. More precisely:

Let g(t) be a divisor of $f(t) = t^n - 1$. Then g generates a principal ideal in $K[t]/K[t](t^n - 1)$;

multiply g(t) by all polynomials h(t) of degree less than n to get every codeword in associatied code C; g(t) is the *generator* for the cyclic code C

Example: (A cyclic Code of length 4 over \mathbb{F}_2)

Let n = 4, $K = \mathbb{F}_2$, $f(t) = t^4 - 1 = (t^2 + t + 1)^2 \in \mathbb{F}_2[t]$. Take the generator polynomial

$$g(t) = t^2 + t + 1.$$

$$C(t) = \{h(t) \cdot g(t) \in \mathbb{F}_2[t]/(t^n - 1) \mid h(t) \in \mathbb{F}_2[t], \deg h < 4\}.$$

This g(t) produces all codewords of the cyclic code C, so that C consists of the following codewords:

$$h(t) = 0$$
: $0 \cdot g(t) = 0 \Rightarrow (0, 0, 0, 0) \in C$
 $h(t) = 1$: $1 \cdot g(t) = t^2 + t + 1 \Rightarrow (1, 1, 1, 0) \in C$
 $h(t) = t$: $t \cdot g(t) = t^3 + t^2 + t \Rightarrow (0, 1, 1, 1) \in C$
 $h(t) = t + 1$: $(t + 1) \cdot g(t) = t^3 + 1 \Rightarrow (1, 0, 0, 1) \in C$

All other h(t) of degree less than 4 produce the same codewords.

Each codeword is closed under the cyclic shift (move last coordinate to the first):

$$(1,1,1,0) o (0,1,1,1), \quad (0,1,1,1) o (1,0,1,1), \dots$$

Generalizations of cyclic codes Let $a \in K^{\times}$. A linear code $C \subset K^n$ is *constacyclic*,

if for each $(c_0, c_1, \ldots, c_{n-1}) \in C$, also $(ac_{n-1}, c_0, c_1, \ldots, c_{n-2}) \in C$.

Equivalently, we view a constacyclic code as an ideal in

$$K[t]/(t^n-a)$$
.

Note: $t^n - a$ needs to be reducible in order to get non-trivial ideals in $K[t]/(t^n - a)$.

Now let $\sigma \in \operatorname{Aut}(K)$. A linear code $C \subset K^n$ is a *skew* (σ,a) -constacyclic code, if for each $(c_0,c_1,\ldots,c_{n-1}) \in C$, also

$$(a\sigma(c_{n-1}), \sigma(c_0), \sigma(c_1), \ldots, \sigma(c_{n-2})) \in C.$$

Equivalently, a skew (σ, a) -constacyclic code is an left principal ideal $K[t; \sigma]g$ in the nonassociative ring

$$K[t;\sigma]/(t^n-a)$$

with generator polynomial g(t), where g right divides f.

II. Skew-polynomial rings

The skew-polynomial ring $R=K[t;\sigma]$ is the set of polynomials

$$f(t) = \sum_{i=0}^{n} a_i t^i$$

with the usual term-wise addition. Multiplication given by

$$ta = \sigma(a)t + \delta(a)$$
 for all $a \in K$.

R is an associative noncommutative unital ring, and K[t] = K[t;id].

For $f(t) = \sum_{i=0}^{n} a_i t^i \in R$ with $a_n \neq 0$, we define the degree of f as $\deg(f) = n$ and put $\deg(0) = -\infty$.

f(t) is called *irreducible*, if there do not exist $g, h \in R$ with $0 < \deg(g), \deg(h) < \deg(f)$ such that f = gh.

Let $f = f_1 \cdots f_r \in R$ be a decomposition of f into irreducible polynomials. Then the irreducible factors f_1, \ldots, f_r are uniquely determined up to order and similarity.

Example: Let $K = \mathbb{F}_8 = \{0, 1, \alpha, \alpha^2, \dots, \alpha^6\}$ with $\alpha^3 + \alpha + 1 = 0$, $\sigma : K \to K$, $\sigma(x) = x^2$, the Frobenius automorphism. Take $f(t) = t^3 - 1 \in K[t; \sigma]$. In K[t],

$$f(t) = (t-1)(t-\alpha)(t-\alpha^2).$$

In $K[t; \sigma]$,

$$f(t) = (t-1)(t-1)(t-1) = (t-1)(t-\alpha)(t-\alpha^2) = (t-\alpha^2)(t-\alpha^4)(t-1)$$

= ... etc.

III. The Petit algebras $K[t; \sigma, \delta]/K[t; \sigma](t^n - a)$

Let $f \in R = S[t; \sigma, \delta]$ be monic of degree $n \geq 2$. For all $g \in R$ there exist unique $r, q \in R$ with $\deg(r) < \deg(f)$, such that

$$g = qf + r.$$

The skew polynomials of degree less that n canonically represent the elements of the left R-module R/Rf.

$$R/Rf = \{g \in R \mid \deg(g) < n\}.$$

1. case: Rf is a two-sided ideal in R

 $\Rightarrow R/Rf$ is an associative quotient ring with multiplication $gh = gh \bmod_r f$ (the "classical case").

2. case: Rf is not a two-sided ideal in R

 $\Rightarrow R/Rf$ with multiplication $gh = gh \mod_r f$ is a nonassociative unital ring (Petit 1966). Here, $\operatorname{mod}_r f$ on the r.h.s. denotes the remainder r.

Theorem (P. 2017) There is a one-to-one correspondence between principal left ideals of $R/R(t^n-a)$ and skew (σ, a) -constacyclic codes of length n over K.

More precisely: Let g be a monic right divisor of $f(t) = t^n - a$. Then g generates a principal left ideal in the nonassociative algebra R/Rf.

The set of vectors corresponding to the elements

$$\{g, tg, \dots, t^{k-1}g\} \subset R/R(t^n - a)$$

forms a basis of the code C and the dimension of C is $k = n - \deg(g)$. This means g is a generator of C.

The matrix generating C represents the right multiplication with g in the nonassociative Petit algebra $R/R(t^n-a)$.

IV. Hamming weight preserving isomorphisms

The three main parameters for a linear code C are

- \bullet its length n;
- its dimension k (of the sub vector space C in K^n , in this talk k = n deg(g));
- ullet its minimum Hamming distance d: the Hamming distance of c and c' in C is the number of components where c and c' differ.

The Hamming weight of $(c_0, c_1, \ldots, c_{n-1}) \in C$ is the number of nonzero components c_i .

We are interested in the ring isomorphisms G between $R/R(t^n-a)$ and $R/R(t^n-b)$ that preserve the Hamming weight (called *isometries*):

$$K[t;\sigma]/K[t;\sigma](t^n-a) \xrightarrow{\text{isometry } G} K[t;\sigma]/K[t;\sigma](t^n-b)$$
 $K[t;\sigma]g(t) \xrightarrow{1-1} S[t;\sigma]G(g(t))$
codes generated by $g(t) \xrightarrow{1-1}$ codes generated by $G(g(t))$

ullet Chen, Fan, Lin, Liu (2012) classify constacyclic codes over \mathbb{F}_q using isomorphisms

 $G: \mathbb{F}_q[t]/(t^n-a) \to \mathbb{F}_q[t]/(t^m-b)$ that satisfy $G|_{\mathbb{F}_q}=id$ and $G(t)=\alpha t^k$ for some integer k>0 and some $\alpha\in\mathbb{F}_q^{\times}$.

- Boulanouar, Batoul, Boucher (2021) compute codes that are equivalent to skew cyclic and negacyclic codes using associative algebra isomorphisms $G: \mathbb{F}_q[t;\sigma]/\mathbb{F}_q[t;\sigma]/\mathbb{F}_q[t;\sigma](t^n-a) \to \mathbb{F}_q[t;\sigma]/\mathbb{F}_q[t;\sigma](t^n-b)$ that satisfy $G|_{\mathbb{F}_q}=id$ and $G(t)=\alpha t$.
- Ou-azzou, Horlemann (2025) classify certain polycyclic codes over \mathbb{F}_q using \mathbb{F}_q -algebra isomorphisms G: $\mathbb{F}_q[t]/(f) \to \mathbb{F}_q[t]/(h)$ that satisfy $G|_{\mathbb{F}_q} = id$ and $G(t) = \alpha t$ for some $\alpha \in \mathbb{F}_q^{\times}$.
- Ou-azzou, Najmeddine, Aydin (2025) and Ou-azzou, Horlemann, Aydin (2025) investigate skew constacyclic

codes and skew polycyclic codes over \mathbb{F}_q using nonassociative algebra isomorphisms $G: \mathbb{F}_q[t;\sigma]/\mathbb{F}_q[t;\sigma]f \to \mathbb{F}_q[t;\sigma]/\mathbb{F}_q[t;\sigma]h$ that satisfy $G|_{\mathbb{F}_q}=id$ and $G(t)=\alpha t^k$, but did not succeed in the k>1 case.

Inspired by their work and our understanding of the isomorphisms of Petit algebras (Brown, Steele, Nevins, P.), we propose the following equivalence notions.

Definition Two rings $R/R(t^n-a)$ and $R/R(t^n-b)$ are called *isometric* if there exists an isomorphism $G=G_{\tau,\alpha,k}:R/R(t^n-a)\to R/R(t^n-b)$ such that $G|_K=\tau\in \operatorname{Aut}(K)$ and $G(t)=\alpha t^k$ for some integer $k\geq 1$, and some $\alpha\in K^\times$, and equivalent if k=1.

Note that $G_{\tau,\alpha,k}$ is Hamming weight preserving.

 $G_{\tau,\alpha,k}$ is called an *isometry* or a *monomial isomorphism* of degree k. $G_{\tau,\alpha,1}$ is called an *equivalence*. When k=1 we use the notation $G_{\tau,\alpha}$. We have

$$G_{\tau,\alpha}(\sum_{i=0}^{n-1} d_i t^i) = \sum_{i=0}^{n-1} \tau(d_i) N_i^{\sigma}(\alpha) t^i,$$

where $N_i^{\sigma}(\alpha) = \alpha \sigma(\alpha) \cdots \sigma^{i-1}(\alpha)$.

When $\operatorname{Aut}(K)$ is abelian, σ has finite order $m, m \geq n-1$ and t^n-a is not two-sided, then all Hamming weight preserving isomorphisms between $R/R(t^n-a)$ and $R/R(t^n-b)$ will be monomial of degree one (Brown-P. 2018, P. 2025).

Let C_a be the class of all skew (σ, a) -constacyclic codes and C_b the class of all skew (σ, b) -constacyclic codes.

Definition C_a and C_b are called *isometric*, if there exists an isometry $G_{\tau,\alpha,k}: R/R(t^n-a) \to R/R(t^n-b)$, and *Chen-isometric*, if $\tau=id$;

 C_a and C_b are called *equivalent*, if there exists an equivalence $G_{\tau,\alpha}: R/R(t^n-a) \to R/R(t^n-b)$, and *Chenequivalent*, if $\tau=id$.

From now on let K/F be a cyclic Galois extension of degree m, $Gal(K/F) = \langle \sigma \rangle$.

Theorem (P. 2025) (i) The classes C_a and C_b are equivalent if and only if there exists $\tau \in \operatorname{Aut}(K)$ that commutes with σ and $\alpha \in K^{\times}$, such that

$$\tau(a) = N_n^{\sigma}(\alpha)b$$

(resp., Chen-equivalent iff this is true with $\tau = id$).

(ii) Let $m \geq n-1$ and assume that t^n-a does not generate a two-sided ideal in $K[t;\sigma]$. Then \mathbf{C}_a and \mathbf{C}_b are isometric if and only if they are equivalent.

V. Equivalent and isometric skew constacyclic codes (Nevins-P. 2025)

Theorem (i) The Hamming weight preserving homomorphisms between two proper nonassociative algebras $K[t;\sigma]/K[t;\sigma](t^n-a)$ and $K[t;\sigma]/K[t;\sigma](t^n-b)$ all have the form $G_{\tau,\alpha}$ for some $\tau \in \operatorname{Aut}(K)$ commuting with σ , and some $\alpha \in K^{\times}$.

(ii) Non monomial homomorphisms between proper nonassociative algebras $K[t;\sigma]/K[t;\sigma](t^n-a)$ and

 $K[t;\sigma]/K[t;\sigma](t^n-b)$ do not occur, subject to a technical hypothesis.

(iii) Let $m \nmid n$. If $G: K[t; \sigma]/K[t; \sigma](t^n-a) \to K[t; \sigma]/K[t; \sigma](t^n-b)$ is a nonzero homomorphism whose restriction to K is given by some $\tau \in \operatorname{Aut}(K)$ commuting with σ , then $G = G_{\tau,\alpha}$.

Remark - Homomorphisms have not been investigated so far, only isomorphisms.

- (ii), (iii) will help us parametrize the division algebras $K[t;\sigma]/K[t;\sigma](t^m-a)$, too (Nevins-P., work in progress, 2025), we only did the case n=m (Nevins-P. J. Algebra, 2025).

Theorem Suppose that all $\tau \in Aut(K)$ commute with σ . Suppose $m \nmid n$, or that one of a or b is not in F.

The classes C_a and C_b of skew constacyclic codes of length n are isometric iff they are equivalent.

Proposition The class of skew (σ, a) -constacyclic codes and the class of skew constacyclic (i.e., $(\sigma, 1)$ -constacyclic) codes of length n are equivalent iff $a \in N_n^{\sigma}(K^{\times})$. For skew constacyclic codes, isometry and equivalence coincide when n does not divide m.

The class of skew (σ, a) -constacyclic codes and the class of skew negacyclic (i.e., $(\sigma, -1)$ -constacyclic) codes of length n are equivalent iff $-a \in N_n^{\sigma}(K^{\times})$. For skew σ -negacyclic codes of length n, isometry and equivalence coincide when n does not divide m.

Theorem Let $K = \mathbb{F}_{p^r}$ and $\sigma(x) = x^{p^s}$ with s|r so that m = r/s and $F = \mathbb{F}_{p^s}$ is the fixed field of σ . Define

$$[n]_s = \frac{p^{sn} - 1}{p^s - 1} = p^{s(n-1)} + p^{s(n-2)} + \dots + p^s + 1.$$

The number of different Chen-isometry classes of skew (σ,a) -constacyclic codes of length n arising from nonassociative algebras is N where

$$N = \begin{cases} \gcd([n]_s, p^r - 1) & \text{if } m \nmid n; \text{ and} \\ \left(1 - \frac{1}{[m]_s}\right) \gcd([n]_s, p^r - 1) & \text{if } m | n. \end{cases}$$

There are additionally $\gcd([n]_s, p^r - 1)/[m]_s$ different Chen-equivalence classes (and thus at most this many Chen-isometry classes) of families of skew (σ, a) -constacyclic codes with associative ambient algebras, for which $m \mid n$ and $a \in F^{\times}$.

Example Let $gcd([n]_s, p^r - 1) = p^r - 1$ then $N_n^{\sigma}(\mathbb{F}_q^{\times}) = \{1\}$ and so no \mathbf{C}_a and \mathbf{C}_b for two distinct $a, b \in \mathbb{F}_q^{\times}$ will be Chen-equivalent. Thus, there are many distinct classes of skew constacyclic codes up to Chen-equivalence.

There are r choices for $\tau \in \operatorname{Gal}(\mathbb{F}_{p^r}/\mathbb{F}_p)$ and so $\{a^{p^v} \mid 0 \leq v < r\} \subset \mathbb{F}_{q^r}$ is an equivalence class with r elements \Rightarrow the corresponding (σ, a^{p^v}) -constacyclic codes are Chen-equivalent \Rightarrow there are fewer equivalence classes than Chen equivalence classes.

Example Let l be prime, $K=\mathbb{F}_{p^l}$, $F=\mathbb{F}_{p^l}$. We obtain a total of only

$$\frac{p^{l^2} - p^l}{l^2} + \frac{p^l - p}{l} + p - 1$$

equivalence classes of skew constacyclic codes of length n, compared with a total of

$$p^{l^2} - 1 = (p^{l^2} - p^l) + (p^l - p) + (p - 1)$$

equivalence classes with respect to Chen equivalence.

VI. Outlook: skew polycyclic codes

Let $f(t) = t^n - \sum_{i=0}^{n-1} a_i t^i \in S[t; \sigma]$ be a reducible monic polynomial of degree n.

A linear code $C \subset S^n$ is a *(right) skew* (f, σ) -polycyclic code if for each codeword $(c_0, c_1, \ldots, c_{n-1})$ of C, also

$$(0, \sigma(c_0), \sigma(c_1), \dots, \sigma(c_{n-2})) + \sigma(c_{n-1})(a_0, a_1, \dots, a_{n-1}) \in C.$$

A skew (f,σ) -polycyclic code $C\subset K^n$ is a subset of K^n consisting of the vectors (c_0,\ldots,c_{n-1}) obtained from all the elements $h=\sum_{i=0}^{n-1}c_it^i$ in a left principal ideal $g\,R/Rf$ of R/Rf, where g is monic.

For $\sigma = id$, we obtain *polycyclic codes* where $f(t) \in K[t]$.